
Children of the Shred: Video Games with Analog
Instruments

Clay Ewing
Parsons MFA DT Candidate

Brooklyn, NY
clay@etherealcereal.com

Bruce Drummond
Parsons MFA DT Candidate

Brooklyn, NY
brucedrummond@gmail.com

ABSTRACT
The impetus of this project is to merge two domains: playing a
musical instrument and gaming in a virtual environment. Many
efforts have been made to allow musicians to improvise over the
internet either asynchronously like Virtual Rock Band or in real
time, such as Ninjam. These applications focus on sound and
music production but lack a participatory visual feedback. The
rise of rhythm based games such as Rock Band and Guitar Hero
have ushered in a wave of enthusiasm for playing instruments.
The downside to these games is that the only connection the
controllers have to an analog instrument is their shape. The goal
is to create a multiplayer network game that can be controlled by
playing an analog instrument. The frequency of sound coming
from the instrument will be analyzed and converted into
commands in the game. As notes are played, the other player will
have to respond by playing the same notes or be penalized. The
result is a generative virtual environment where people can play
against each other as a game or together as a performance.

1. INTRODUCTION
Children of the Shred is a real-time computer game in which two
players can challenge each other’s music improvisational skills by
playing out a narrative adventure with digital or analog
instruments. The two players have the choice to be either the
zombie slayer or the zombie lord. According to their character
selection, sprites (either zombies or slayers) are created that
correspond to the notes that are played. These note specific
zombies and slayers can only kill their same note.

While there are a wide variety of musical applications for
computers along with a myriad of video games, there is not a
video game that a user can play with a real instrument, such as a
guitar. Rhythm based games, such as Rock Band and Guitar
Hero, use mock instrument controllers to follow along with the
general rhythm of the song. Software such as Ninjam and
eAUDiiO Jamming allow for online music collaboration yet are
strictly tools for creation and not a game. There is no reason why
a user playing a video game with a guitar controller shouldn’t be
able to transfer those skills off the screen and into the real world.
The main goal of Children of the Shred is to take a guitar and map
the frequencies it produces into controls for a video game. It is
also important to factor in the use of the internet for remote
multiplayer gaming. As the internet becomes more ubiquitous,
it’s becoming an inherent requirement that any new technology
should be able to connect to a larger system. This game can then
act as a medium for learning to play the guitar, extend pre-
existing skills, as well as give musicians a new outlet for creating
music whether locally or remotely.

2. DESIGN AND PROTOTYPING
The design of this video game was a three part process. The first
part involved turning an audio signal into something that could
control gameplay, which was achieved by using Max/MSP/Jitter.
The second part was receiving this newly created data in a video
game environment in Python. The third part of the process was
building the actual video game in Python along with the PyGame
module.

2.1 Frequency Analysis
In order to turn an analog instrument into a game controller, we
turned to Max/MSP/Jitter to analyze the incoming signal
frequency. Max/MSP/Jitter is a graphical development
environment for music and multimedia which is developed by
Cycling ’74 [4]. The frequency analysis was simplified by using
a third party object, pitch~, created by Tristan Jehan at the MIT
Media Lab. Each time the audio signal reached a specified peak
in amplitude, the frequency was then broadcast using an OSC
formatted UDP packet. OSC, or OpenSound Control, is a
protocol for communication among computers, sound
synthesizers, and other multimedia devices that are optimized for
modern networking technology [5]. These packets could then be
picked up by the Python program to be used for game control.

Figure 1. Guitar Translator Max Patch

mailto:clay@etherealcereal.com�
mailto:brucedrummond@gmail.com�

2.2 Sending and Receiving Packet
Information in Python from Max/MSP/Jitter
To receive a UDP broadcast in Python, a virtual port must be
opened. This virtual port must be open and in a listening state the
entire time the game is being played. To achieve a multiplayer
environment, the Max/MSP/Jitter program sends the OSC packet
with frequency information to two separate addresses. The first
packet is sent to the local computer with an address of “/max/you”
while a second packet is broadcast to the second player’s
computer using the addresss “/max/opponent.” This allows
Python to discern between which user is playing a note.
Figure 2. System Diagram for Processing an Audio Signal

After the frequency of the note is received, Python compares that
number to a list of values that correspond to the frequency of
notes that can be played by a guitar. This information is then
used to generate the sprites for each player.

2.3 Game Design
With so many games involving musical instruments gearing the
theme towards playing music, there was a strong desire to move
away from this trend. As zombies are a well recognized and
widely appreciated phenomenon in popular culture, the thought of
using them as a theme felt like a good way to break away from
the usual routine. The science fiction and horror theme also allow
greater license to expand the game in the future as a more realistic
game would require much more explanation in terms of narrative
during game play [1].

Figure 3. Zombie Sprites

Figure 4. Slayer Sprites

The game board is setup with the zombie lord occupying the top
of the screen, with the zombie slayer at the bottom of the screen.
As notes are played on the guitar, zombies and slayers appear on
the screen and move towards the opponent’s side. When the
sprites collide, if the notes are the same, the location of the sprite
is analyzed. If the sprite is destroyed on the opponent’s side, the
player gets more points. If the sprite is destroyed on the player’s
side, the opponent gets more points. The idea is that the faster a
person responds with the correct note, the more they will be
rewarded. This back and forth lasts for a total of 3 minutes and
then the game is over.

The decision to use Python as a programming environment came
down to three points: cross platform compatibility, a wide range
of modules, and simplicity of code. As Python compiles at
runtime, there is no need to create a version of the software for
each operating system. The modules available for use with
Python grow every day, but specifically PyGame (a module for
game development) and SimpleOSC (for receiving and sending
OSC packets) made the project a lot less daunting.

Since the target audience for the game was casual gamers and
casual musicians, we decided to focus on socializers. Socializers
are people for whom the greatest reward is interacting with other
people, through the medium of the virtual world [1]. Through
playing music and killing zombies, the socializers will have an
outlet to interact with their friends in a virtual world. Therefore
the game play should be simple and not overly complex. As this

game’s main purpose is interacting with another player, the
socializer should enjoy playing this game.

2.3.1 Story Boards
In order to get a clear idea of how the game would be played out,
story boards were created. Initially, the options screen would
present the player with the choice of two modes of play (battle
and performance) as well as a location. The location would
function as purely a backdrop during the battle.
Figure 5. Options Screen for Storyboard

The battle screen shows both the Zombie Lord and the Zombie
Slayer on opposite sides of the screen. The sprites are released
from the top and bottom of the screen and get closer as they get
closer to the opposite player. Bullets would be shot out to kill the
approaching zombies, at a specific location based on the note
played. If the zombies or bullets get past the bottom or top of the
screen, the opponent’s health would be affected negatively. If the
health wasn’t diminished completely by a certain point, the timer
would run out and cause the game to end.
Figure 7. Battle Screen for Storyboard

The instrument control panel would be contained as a
Max/MSP/Jitter runtime. This program would allow for adjusting
the input level of the incoming instrument, overall output volume,
instrument type selection and different effects presets.

Figure 6. Instrument Control Panel for Story Board

2.3.2 First Prototype
Initially, the game was a free for all, with players being allowed
to play whatever they wanted whenever they wanted. The size of
the sprites in the first version also allowed for 32 of them per row
on the screen. Each note was differentiated by a different color
sprite. The amount and size of sprites proved to be particularly
troublesome as the screen could very quickly fill up with vast
quantities of zombies and slayers.
The concept of having an actual player on either side of the screen
was dropped as it took up too much valuable screen space. The
idea of introducing a 3D perspective was also dismissed as one
sprite could eventually crowd the entire screen and ruin the flow
of the game.
By allowing both players to create sprites at the same time,
another problem was brought to light: there was no way to specify
the location the zombie would be generated at without perfect
timing. Even if they managed to get their timing down properly,
there were too many choices of notes coming at the player. Any
meaningful game play was ruined by the chaos that ensued on the
screen.
The decision was also made to limit the amount of notes
recognized by the game. While a standard guitar is a 6x24
matrix, resulting in numerous possibilities for notes in many
different octaves, the game treats each octave the same. This
way, if an E is played on the low string or high string, it sees it as
the same thing. Therefore, the game was limited to 12 possible
notes (C, C#, D, D#, E, F, F#, G, G#, A, A#, and B).

Figure 7. First Prototype Screenshot

2.3.3 Second Prototype
To tone down the amount of chaos, a few new rules were
implemented into the logic of the game. The sprites were
enlarged 400% so that it took only 8 of them to fill up a row of
the screen. A turn based system was also added so that each
player was allowed 8 notes and then cut off until the opposite
player responded with their 8 note turn.
With fewer sprites on the screen, the game became more visually
digestible. The enlargement of sprites also allowed for the name
of the note to be placed to the side of the sprite which created an
additional visual cue to tell the player what note to play. By
setting the number of notes to be played to the same size as a row
of sprites, it became a lot easier to decide what note should be
played as compared to the first version.
Blood spatter was also added when the opposing sprites collided.
Figure 8. Blood Spatter Graphic

2.3.4 Third Prototype
With the basic game play taking shape, the focus of the third
prototype turned to semantics. An overall game timer was added
so that each game would last 3 minutes.

Figure 9. Third Prototype Screenshot

A feedback system was also added to encourage or taunt the
player or opponent when a certain number of correct notes had
been played.
Figure 10. Positive Feedback Screenshot

3. METHODOLOGY
3.1 Concept
The idea of music making video games is not new. The push for
real time online music collaboration has been chased somewhat
unsuccessfully for a long time. However, after surveying all that
is available in these realms, there are very few options for
learning to play an instrument and none that allow to people to
improvise on an instrument and play against each other in a game
at the same time.
The impetus of this project is to create a virtual environment that
allows music creation, improvisation, and skill development. A
game that only allows a certain set of commands in a specific
order will eventually become boring. A game in which a player
can walk away with a new found skill is not only useful, but
exciting. If a video game player, like Daniel Piacampo, who is
considered one of the best Guitar Hero players in the world [7]
was learning the guitar while mastering a video game, he could
become a great musician. The possibilities for learning through

game play present a wide variety of opportunities in many fields,
but this project the sole focus is on musical instruments.
Furthermore, the computer is an ideal medium to challenge the
musical improvisational skills of two people. As a computers can
automate complicated procedures [2] the task of identifying each
note played and comparing it to another requires no effort on the
player’s part. If an analog version of an improvisational music
game was created, the referee would have to have perfect pitch, as
well as the ability to count every individual note played by a
person.

3.2 Previous Explorations
As casual musicians ourselves, we fall into the category of not
having a regular group of people to make music with. That being
said, anything musically oriented is appealing. The rhythm based
games are very fun but offer no way to improve our actual
musical abilities.
For the past few months, our explorations with Max/MSP/Jitter
have led us down two paths: the endless possibilities for
controllers, and the flexibility of OpenSound Control. Without
Max/MSP/Jitter, the task of analyzing frequencies would seem
very daunting but with the tools available today, it’s not
farfetched at all.

3.3 User Surveys
A simple online survey was used to gather responses regarding
online music collaboration and musical abilities. 54 surveys were
completed, with most of the responses coming from our target
audience of casual musicians and casual gamers.

Figure 1. Respondent Classification

0

5

10

15

20

25

Number of People

Musician

Occasional
Musician

Gamer

Occasional
Gamer

Neither Musician
or Gamer

The guitar was the most played instrument, followed closely by
the piano. The data seems to show that the majority of people
with musical skills gravitate towards an instrument that could be
included in a typical 4 piece ensemble (guitar, piano, bass, and
drums).

Figure 11. Types of Instruments Played

0

2

4

6

8

10

12

14

Number of People

Accordion

Banjo

Bass

Saxophone

Turntables

Drums

Flute

Guitar

Piano

i li
The most encouraging piece of data from the survey was that
about 40% of non-musicians had the desire to jam.

Table 1. Desire to Jam (non-Musicians)

Response Number of People

Yes 22

No 23

Less than half of our respondents said that they jammed. This
was expected as our target audience was casual musicians and
gamers, so the likelihood that every respondent would have a
group of people to make music with was low.

Table 2. Number of Respondents That Jammed

Response Number of People

Yes 20

No 34

The respondents seemed to prefer jamming by themselves or with
a group of people in a shared physical space. Hardly anyone
jammed using a network.

Figure 12. How People Jam

0

5

10

15

20

Number of People

In a Shared
Physical Space

Online

Alone (with
software or along
with a song)

The most surprising result of the survey was that even though
there are many venues for online music collaboration, they are
hardly ever used. As many people jam to songs alone, this gives

weight to the idea that people would use online methods for
jamming if they were widely known and reliable.

Figure 13. Use of Online Music Collaboration Tools

0

10

20

30

40

50

Number of People

None

File Swapping

Ninjam

JamLegend

eJamming AUDiiO

Cococompose

JamVox

4. ANALYSIS
4.1 Using an Instrument as a Controller
The biggest problem of using an instrument like a guitar for
frequency analysis is that each note played produces more than
one frequency. Even when the guitar is tuned properly, a
controller that works 95% of the time ends up being rather
unreliable for a game where time matters. The other drawback is
that chords are especially hard to decipher as six notes are being
played at the exact same time.

Max/MSP/Jitter is a great environment to build rapid prototypes,
but the reliability was not at a level where the average person
could use our patch as a bridge. Using software to decipher
everything, in the end, is not the best method and would be
avoided in future iterations.

When a keyboard was used to play the game, the note detection
was flawless. The reliability of the controller made the game
much more enjoyable. In the future, a guitar with a hexaphonic
MIDI pickup would be the ideal solution as note detection would
be extremely accurate. This would also reduce a layer of
complexity to the code, as much of the processing would be done
on the hardware level.

Figure 14. Revised System Diagram for Processing an Audio
Signal

4.2 Networked Game Play
Perhaps the most ambitious portion of this game was allowing for
networked play. There are two issues with this setup and they
both deal with latency: audio signals and note detection.
Even through a local area network, the latency of playing a note
to showing up on the screen at times was around 80 milliseconds.
While this is a very short period of time, for a musician to play to
their full ability, the lag must be non-existent. If a note doesn’t
show up on the screen as soon as it’s played it can very easily
throw the player into confusion if the note was picked up by the
computer or not.
While UDP broadcasts of frequencies being played are very small
packets, sending an entire audio signal over the internet requires
much more bandwidth. The latency was so bad when trying to
stream audio that it didn’t survive the first prototype. One way
that this could be avoided might be to send the other player’s
commands across the network as MIDI notes. The lag wouldn’t
be as noticeable as it is the other player’s instrument that needs to
be heard. This would definitely be acceptable in a tutor mode of
play, not as much in a performance setting.

4.3 Game Design
Throughout the user testing, the feedback on the game was
overwhelmingly positive. People seemed to respond very well to
the idea of playing an instrument and battling zombies at the same
time. Many people were excited to play a game that used a real
instrument instead of a control that just looks like one.
The biggest improvement to the game would involve creating a
one player version. This version could include a tutor mode that
would allow the player to slowly learn to play the guitar.
Beginners would also find tablature notation helpful at the bottom
of the screen.
Another problem encountered once turns were implemented was
that a player couldn’t tell if what they were playing was being

interpreted correctly by the computer. This could be fixed by
adding an in-game tuner that would show the player what note the
computer is picking up each time the guitar is played.
Another interface that could be developed would be anchoring
notes to a specific portion of the screen and eliminating turn based
play. While this would allow the screen to fill up relatively fast,
the players wouldn’t be locked into a call and response type of
play.
The last issue with the game play is the scoring method. Having a
score at the top of the screen didn’t seem to grab a player’s
attention the way it was intended to. Most likely, a health meter
would work better.
Figure 15. Future Battle Screen

5. RESEARCH
The domains of this project include video games (specifically
rhythm based and shoot ‘em ups), online music collaboration, and
computer enhanced live performance.

Figure 16. Domain Map

5.1 Video Games
There are many different video games that have inspired Children
of the Shred. Each game has its pros and cons, so an overview of
titles is appropriate.

Rock Band is a console based video game where players use
controllers that look like instruments to perform songs. Players
have the option of using a guitar, bass, drums, or vocals. Each
controller (aside from the microphone for vocals) has 5 buttons
that can be pushed. These buttons are mapped to the song in a
way that allows the player to feel as if they’re playing a long with
the song because of the rhythmic arrangement. While this game
is very fun and entertaining, it does not use real instruments.
Without a real instrument as a control, the only skill that can be
improved is pushing buttons rhythmically.
Figure 17. Rock Band Screenshot

JamLegend is another rhythm based video game for the computer
that uses a web interface. Unlike Rock Band, users of JamLegend
can upload their own songs to play along with or to challenge
others with. The biggest drawback to JamLegend is that instead
of an instrument like controller, users are required to use their
keyboard to play. [jamlegend website] The ability to play online
and upload your own songs is a great addition but the fact that the
user is limited to their keyboard as an input device is a severe
drawback.
Figure 17. JamLegend Screenshot

Typing of the Dead is a 3D shoot ‘em up where players have to
type the word on the screen in order to shoot the approaching
zombies. The faster the player types the word, the higher the
score they receive. This game achieves everything it sets out to
do: teach people to type and make it entertaining.
Figure 18. Typing of the Dead Screenshot

5.1 Software for Music Collaboration
Numerous attempts have been made at creating systems for
networked music collaboration, whether real time or
asynchronous. Some of these services cost money while others
are free.

Ninjam is an online public collaboration room that subscribers
can access for an hour a day. Due to bandwidth issues, the others
hear and play with everything precisely one bar after the musician
plays it [6]. The whole system is cost prohibitive as a musician
either has to pay hourly to use public servers, or pay a lot more to
setup their own server. Furthermore, the streaming audio is not at
a high sample rate and there is no visual feedback for what is
going on.

JamVox is a jam and practice tool for guitar players. Users can
load their favorite song and the guitar track will be muted so that
they can play the part themselves. The software also has a built in
effects unit, which is important considering most people plugging
an instrument into a computer don’t process their signal
afterwards. However, there is no network functionality to connect
to other musicians.

Virtual Rock Band is a community driven website where
musicians can meet up and swap their tracks. While this process
allows for online collaboration, the users never get to experience
playing along with someone else in real time. There is also the
possibility that no one will listen to your tracks and your jamming
desires will never be remotely filled.

eJamming AUDiiO is software that enables musicians to
collaborate and record music online. eJamming also produces
software that can broadcast these sessions in real time. While the
service is still in beta, it is highly promising. [3]

5.2 Computer Enhanced Live Performance
d.v.d: Watch the Beat of the Drums is an interactive performance
where two drummers play and create visualizations generated by
the sound of the drums. The end result is a game of pinball being
played in front of an audience. People who watch this
performance are listening to original music and seeing a video
game being played at the same time. A limitation of this is that
the game is really just a visualization and there is a lack of variety
on the screen.
Figure x. Watch the Beat of the Drums Performance

6. CONCLUSION
Games using real instruments as controllers are the next logical
step for musical video games. They will help educate a mass
audience about music and music theory. Beyond basic learning,
these games can also help musicians practice and improve their
improvisational skills. The performative nature of people playing
instruments to control a game also offers a new venue for
musicians to showcase their work. All of these pieces are part of
a larger puzzle in gaming and music that represent a growing and
fascinating field of study.

7. REFERENCE
[1] Bartle, Richard A. Designing Virtual Worlds, New Riders

Publishing, 2003.
[2] Salen, Katie and Eric Zimmerman, Rules of Play: Game

Design Fundamentals, MIT Press, 2004.
[3] DEMO Innovators Achieve Outstanding Success; A Round

Up of Early 2007 DEMO Demonstrator News. (16
May). PR Newswire,***[1]***. Retrieved December 17,
2008, from ProQuest Newsstand database. (Document
ID: 1271649911).

[4] “Max (software)” in Wikipedia. 2008.
http://en.wikipedia.org/wiki/Max_MSP

http://en.wikipedia.org/wiki/Max_MSP�

[5] “OpenSound Control” in Wikipedia. 2008.
http://en.wikipedia.org/wiki/OpenSound_Control

[6] Gregory Walker (2008, January). Going
Global. Strings, 22(6), 22,24-25,8. Retrieved December 17,

2008, from Research Library database. (Document
ID: 1396235961).

[7] Colin Campbell (2008, November). UNLEASHING
GUITAR HERO. Maclean's, 121(46), 26-27. Retrieved
December 17, 2008, from ABI/INFORM Global database.
(Document ID: 1603285121).

http://en.wikipedia.org/wiki/OpenSound_Control�

	INTRODUCTION
	DESIGN AND PROTOTYPING
	Frequency Analysis
	Sending and Receiving Packet Information in Python from Max/MSP/Jitter
	Game Design
	Story Boards
	First Prototype
	Second Prototype
	Third Prototype

	METHODOLOGY
	Concept
	Previous Explorations
	User Surveys

	ANALYSIS
	Using an Instrument as a Controller
	Networked Game Play
	Game Design

	RESEARCH
	Video Games
	Software for Music Collaboration
	Computer Enhanced Live Performance

	CONCLUSION
	REFERENCE

